複数地震動の時刻歴応答包絡一様化のためのフレームモデルの効率的な部材断面選定方法

その2 遺伝的アルゴリズムによる部材選定

正会員	○永渕飛鳥*	同	堤	千春*
同	鈴木光雄*	同	橋本	直央*

遺伝的アルゴリズム 層剛性 鉄骨部材 フレームモデル

1. はじめに

フレームモデルの応答一様化を実現するために、その 1で、質点モデルに置き換えた検討を行い、目標とする 層剛性の設定を行った。

その2では、フレームモデルの部材選定を行う。通常 の設計では、地震時に発生する応力に対し部材設計を行 うことになるが、ここでは応力条件に加え、目標層剛性 となるように部材選定を行う必要がある。鉄骨を例にす れば、応力だけの条件の場合は、ある仮定断面を決めた 後、同じ柱径や同じ梁せい、あるいは近傍の寸法内で板 厚を増減させて調整を行うことが一般的である。このた め、層剛性は初期に決めた部材断面に大きく依存するも のと言える。目標層剛性を考える場合は、初期の仮定断 面を決める段階で断面を如何に設定するかが重要となり、 このための部材選定法の知見は少ないものと考えられる ため、最適化手法を取り入れて検討を行う。

2. フレームモデルの概要

その1で述べた通り、平面フレームモデルは5層の鉄骨 造とする。部材選定での境界条件は1FLの節点をピン支 持で検討する。

図1 ピン支持モデル

長期荷重は、梁の等分布荷重として考慮し表1のように 設定する。地震時の層せん断力は質点モデルの応答結果 より設定する。地震時層せん断力と目標層剛性を表2に示 す。長期荷重時および地震荷重時の応力解析を行い、長 期、短期の部材断面検定を行う。また、層剛性は、地震 荷重時の各層の層せん断力と層間変位より求める方針と する。

An efficient method of selecting cross-sections of frame models for uniformizing multiple seismic responses (Part 2 Selection of cross-sections of frame models by genetic algorithm) フレームモデルの柱符号は、C1,C2 の2 種類、梁符号は G1 の1種類とする。柱、梁の候補となる部材リストは表 3の通りとし、柱27種類、梁88種類を用意した。5層(1 FL 梁を除く)について、梁リスト 88 種類、柱リスト 27 種類を考えると、組合せは約 1.1×10²⁴通りとなる。この 膨大な組み合わせの全てを、逐一応力解析を行いながら 検討することは不可能である。

このため、効率的に部材選定を行うために、最適化手 法を取り入れる。ここで、柱梁の部材は部材リストから 選択するものとする。各部材の断面性能は不連続なリス トとなることから、最適化手法のうち発見的手法である 遺伝的アルゴリズムを用いるものとする。

表1 長期荷重

表2 地震層せん断力と目標剛性

FL	長期荷重 梁等分布荷重(kN/m)
R	50.0
5	40.0
4	40.0
3	40.0
2	40.0
1	60.0

階	層せん断力 (kN)	目標剛性 _{tg} k (kN/mm)
5	365.8	29.4
4	488.5	39.2
3	558.4	44.8
2	629.9	50.6
1	651.9	44.3

表3 部材選定リスト

柱				[mm]	 大梁				[mm]
タイプ	В	D	t	種別	Н	В	tw	tf	種別
	{ 300, 350	{ 300, 350	{ 9, 12		600	200	11	17	細幅H 1種類
	400	400	14	BCR295	588		12	20	
	450	450	16	27種類	700	200	13	24	中幅H
	500	500	19	2/12/08	800	300	14	26	4種類
	550 }	550 }	22 }		900		16	28	
	,	,	,		{ 600, 650, 700, 750, 800, 850, 900 }	{ 200, 250, 300, 350 }	{ 12, 14, 16, 19 }	{ 19, 22, 25, 28, 32 }	外法一定H 83種類

3. 目的関数の設定

部材選定後、応力解析を行い、部材の応力検定および、 層剛性の算出を行う。

ここでの目的は、n層建物の各層の層剛性 k_j を目標層剛 性 $t_g k_j$ に近くなるように部材を選定することである。この 際、部材応力は許容応力度以内の条件を課すものとする。このための評価関数 $f_e(x_i)$ として下式を設定する。

NAGABUCHI Asuka, TSUTSUMI Chiharu, SUZUKI Mitsuo, HASHIMOTO Naohiro

$$f_{e}(x_{i}) = (1 + f(x_{i})) \cdot p_{e_{l}}(x_{i}) \cdot p_{e_{s}}(x_{i})$$
(1)

$$f(x_i) = \sum_{j=1}^{n} |k_j(x_i) - {}_{tg}k_j| / {}_{tg}k_j$$
⁽²⁾

$$p_{e}(x_{i}) = \left(\sum_{j=1}^{n_{m}} a_{j}(x_{i})\right) / n_{m}$$

$$a_{j}(x_{i}) = \begin{cases} 1.0 & (e_{j} \le 1.0) \\ 10 & e_{j}^{2} & (e_{j} > 1.0) \end{cases}$$
(3)

ここで、 x_i はリストから選択される部材の性能からなる ベクトルを示す。fで各層の剛性と目標剛性の誤差の合計 を評価する。また、制約条件として部材が許容応力度以 内とするため、許容応力度を超えた場合にペナルティー を課す目的で $p_e(x_i)$ を設定している。 n_m は部材数、 e_j は検 定値を示す。ここで、長期検定の場合に対し $p_{e,l}(x_i)$ 、短 期検定の場合に対し $p_{e,s}(x_i)$ と表示し、両者をかけ合わせ る形で(1)式に適用している。

4. 部材選定結果

 $f_e(x_i)$ を目的関数として、 $f_e(x_i)$ が最小となる x_i を遺伝的 アルゴリズムにより求める。層剛性はオープンソースの OpenSees⁵⁾を用いた解析結果から算出する。遺伝的アルゴ リズムは Rhinoceros/Grasshopper の標準コンポーネント Galapagos を利用する。ここでは、OpenSees と Rhinoceros/Grasshopper を連携させて効率的な検討を行う ため、北九州市立大学藤田研究室で公開されている OpenSees for Grasshopper⁶⁾を利用している。

遺伝的アルゴリズムの世代ごとの個体数を 50(第0世代は 50×3)として検討した目的関数の推移を下図に示す。 50世代連続して $f_e(x_i)$ の最小値が同値となった時点で収束したとみなし、反復計算を終了している。

図2 目的関数の推移

剛性の分布を表4に示す。精度よく目標剛性に適合する 結果となっている。また、選定された部材を表5に示す。

表4 層剛性の適合結果

階	目標層剛性 _{tg} k (kN/mm)	部材選定後 フレーム層剛性 _{rsit} k (kN/mm)	_{rslt} k∕ _{tg} k
5	29.42	29.31	0.9964
4	39.23	39.47	1.0062
3	44.81	44.75	0.9987
2	50.60	50.76	1.0032
1	44.26	44.26	1.0000

*山下設計

表5 最適解部材リスト

柱断面	iリスト		_	FL	G1
階	C1	C2		R	H-800*300*14*25
5	□-450*450*9	□-300*300*12		5	H-800*250*16*28
4	□-400*400*19	□-350*350*19		4	H-700*350*16*32
3	□-400*400*22	□-400*400*16		3	H-750*350*14*25
2	□-400*400*19	□-450*450*19		2	H-750*300*16*32
1	□-450*450*19	□-400*400*19		1	H-1000*400*19*32

表5では、柱リストで柱径、板厚が下階で小さくなる部 材が選ばれる結果となっている。このため、下式のペナ ルティー関数 $p_c(x_i)$ を(1)式に足し合わせて評価する。

$$f_{ec}(x_i) = (1 + f(x_i)) \cdot p_{e_l}(x_i) \cdot p_{e_s}(x_i) + p_c(x_i)$$
(4)

$$p_c(x_i) = n_{pc}^2$$
(5)

$$n_{pc}: [下層の柱径, 厚み < 上層の柱径, 厚み]$$
となる箇所数

この結果について図 3 に目的関数の推移を、表 6、7 に 層剛性の適合結果と部材断面を示す。世代の収束性を $f_e(x_i)$ 、 $f_{ec}(x_i)$ で比較すると、両者 15 世代目以降は類似し た推移を示しており、 $p_c(x_i)$ の収束性への影響は小さいと 思われる。最終的な部材断面の柱リストは意図通りの結 果であり、層剛性の適合度も良好である。

階	目標層剛性 _{tg} k (kN/mm)	フレーム層剛性 _{rsit} k (kN/mm)	_{rslt} k/ _{tg} k
5	29.42	29.58	1.0056
4	39.23	39.51	1.0071
3	44.81	44.89	1.0018
2	50.60	50.40	0.9961
1	44.26	44.33	1.0016

表7 最適解部材リスト ($f_{ec}(x_i)$ による評価)

沙峡声ロフト

		不可臣			
柱断面	iリスト			FL	G1
階	C1	C2		R	H-750*300*16*28
5	□-450*450*9	□-300*300*12		5	H-800*250*16*28
4	□-450*450*9	□-450*450*12		4	H-750*300*14*25
3	□-450*450*12	□-450*450*14		3	H-750*300*16*32
2	□-450*450*14	□-450*450*14		2	H-800*300*16*32
1	□-450 * 450 * 16	□-450*450*14		1	H-1000*400*19*32

5. まとめ

遺伝的アルゴリズムにより、目標層剛性に適合するフレームモデルの部材選定を行い、良好な結果を得た。

参考文献はその3にまとめて示す。

* Yamashita Sekkei Inc.