Holzer 法を用いた実数値計算による複素固有値解析法

正会員 ○鈴木光雄*1

複素固有値解析 Holzer 法 非比例減衰

1. はじめに

建築物の耐震安全性向上のために、制振構造が数多くの採用さ れている。耐震安全性の確認には、一般に時刻歴応答解析が行わ れる。時刻歴応答解析では、限られた地震動での検証となるため、 必ずしも想定した地震動レベルに対する応答性能を普遍的に保証 するものではない。このため、固有モードに基づく応答値の確認 などで、応答結果を補完検証しておくことが有効である。

粘性減衰を設置した建物のモード解析では、減衰マトリクスが 剛性マトリクスや質量マトリクスに比例するような場合、モード 解析の結果が実数の範囲で直交化が可能であり、汎用の解析ソフ トが豊富に用意され、比較的容易に扱える状況にある。一方、減 衰分布が剛性分布や質量分布に比例しないような非比例減衰の場 合、固有値や固有モードが複素数となり、複素固有値解析により 算出する必要があり、解析ソフトも一般的といい難く困難を伴う。

「建築物の構造関係技術基準解説書」では無減衰の固有値解析 について、簡易な演算方法として Stodola 法や Holzer 法が言及さ れている。本報告では、せん断モデルを対象として、複素固有値 解析における簡易な演算方法を目的として、Holzer 法を用いた実 数計算での複素固有値、複素固有ベクトルの算出を試みる。

2. 複素固有値問題

...

...

n質点のせん断モデルを考えj層の質量、せん断剛性、減衰定数 衰マトリクスをC、s次の固有値をλ^(s)、固有モードベクトルをu^(s) とすると、複素固有値問題は(1)式のようになる。

> $-\lambda^{(s)^2}\mathbf{M}\mathbf{u}^{(s)} + \lambda^{(s)}\mathbf{C}\mathbf{u}^{(s)} + \mathbf{K}\mathbf{u}^{(s)} = \mathbf{0}$ (1)

 $\lambda^{(s)} \ge \mathbf{u}^{(s)}$ は一般に複素数となる。固有値 $\lambda^{(s)}$ は、固有円振動数 $\omega^{(s)}$ 、 減衰定数h^(s)(本報告ではh^(s) ≤1とする)、虚数単位iを用いて次式 のように表される。

$$\lambda^{(s)} = \xi^{(s)} + \eta^{(s)}i\tag{2}$$

$$\xi^{(s)} = -h^{(s)}\omega^{(s)}, \quad \eta^{(s)} = \omega^{(s)}\sqrt{1 - h^{(s)^2}}$$
(3)

モードベクトル成分を
$$u_j^{(s)}$$
として(1)式を各層に関して示す。
1 層: $\lambda^{(s)^2} m_1 u_1^{(s)} + \lambda^{(s)} c_1 u_1^{(s)} - \lambda^{(s)} c_2 (u_2^{(s)} - u_1^{(s)})$
 $+ k_1 u_1^{(s)} - k_2 (u_2^{(s)} - u_1^{(s)}) = 0$ ⁽⁴⁾

$$j \overrightarrow{\mathbb{B}}: \ \lambda^{(s)^2} m_j u_j^{(s)} + \lambda^{(s)} c_j (u_j^{(s)} - u_{j-1}^{(s)}) - \lambda^{(s)} c_{j+1} (u_{j+1}^{(s)} - u_j^{(s)}) + k_j (u_j^{(s)} - u_{j-1}^{(s)}) - k_{j+1} (u_{j+1}^{(s)} - u_j^{(s)}) = 0$$
(5)

$$n \mathbb{B}: \lambda^{(s)^2} m_n u_n^{(s)} + \lambda^{(s)} c_n (u_n^{(s)} - u_{n-1}^{(s)}) + k_n (u_n^{(s)} - u_{n-1}^{(s)}) = 0$$
(6)

n~j層の式を足し合わせると下式の通りとなる。

$$\lambda^{(s)^2} \sum_{l=j}^{n} m_l u_l^{(s)} + \lambda^{(s)} c_j \left(u_j^{(s)} - u_{j-1}^{(s)} \right) + k_j \left(u_j^{(s)} - u_{j-1}^{(s)} \right) = 0$$
(7)

3. Holzer 法の適用

(7)式は、固有円振動数ω^(s)での定常振動状態のj層の層せん断力、 減衰力、および上部慣性力のつり合い式に相当する。また、(7)式 $u_i^{(s)}$ に関する漸化式とみることができ、 $\omega^{(s)}$ 、 $h^{(s)}$ を設定し、 $u_n^{(s)}$ を1などと適宜設定すると、順次u^(s)が決定される。

1) モードベクトル成分の算出

複素固有値問題を実数のみの扱いで計算を行うために、(7)式を 虚数の扱いに留意して実部と虚部を分離して整理する。モードベ クトルの成分 $u_{i-1}^{(s)}$ について整理した式を(8)、(9)式に示す。ここで、 Re[·]、Im[·]は、それぞれ複素数の実部と虚部を示す。

$$Re[u_{j-1}^{(s)}] = Re[u_j^{(s)}] + A_j^{(s)} \sum_{l=j}^n m_l \cdot Re[u_l^{(s)}] - B_j^{(s)} \sum_{l=j}^n m_l \cdot Im[u_l^{(s)}]$$
(8)

$$Im[u_{j-1}^{(s)}] = Im[u_{j}^{(s)}] + B_{j}^{(s)} \sum_{l=j}^{n} m_{l} \cdot Re[u_{l}^{(s)}] + A_{j}^{(s)} \sum_{l=j}^{n} m_{l} \cdot Im[u_{l}^{(s)}]$$
(9)

こで、
$$A_j^{(s)}$$
、 $B_j^{(s)}$ は以下の手順で算出する。 $lpha_j^{(s)}=k_j+\xi^{(s)}c_j$

$$\beta_j^{(s)} = \eta^{(s)} c_j \tag{11}$$

$$A_{j}^{(s)} = \left\{ \left(\xi^{(s)^{2}} - \eta^{(s)^{2}} \right) \alpha_{j}^{(s)} + 2\xi^{(s)} \eta^{(s)} \beta_{j}^{(s)} \right\} / \left(\alpha_{j}^{(s)^{2}} + \beta_{j}^{(s)^{2}} \right)$$
(12)

$$B_{j}^{(s)} = \left\{ 2\xi^{(s)}\eta^{(s)}\alpha_{j}^{(s)} - \left(\xi^{(s)^{2}} - \eta^{(s)^{2}}\right)\beta_{j}^{(s)} \right\} / \left(\alpha_{j}^{(s)^{2}} + \beta_{j}^{(s)^{2}}\right)$$
(13)
Holzer 洋①概要

2) Holzer 法の概要

n~1層に関する(8)、(9)式よりu^(s)に対応するu^(s)の値が算出され る。 $\omega^{(s)}$ 、 $h^{(s)}$ が真の値の場合、 $u_0^{(s)}$ は0となるが、その他の場合は 0以外の値となり、境界条件を満足しない結果となる。無減衰のと きに(7)式のω^(s)に任意の値ωを代入し、u₀を算出した例を図1に示 す。Holzer 法は、このグラフより $u_0 = 0$ となる ω を直線補間近似に より求める方法である。

減衰を考慮する場合、ωとhの 2 つのパラメータが影響し、また、 **u**₀が複素数となるため、実数成分と虚数成分を考慮するために扱 いが複雑となる。uoについて複素数の絶対値の二乗|uo|2で評価し、 hが異なる値の場合の $\omega \geq |u_0|^2$ の関係を図 2 に示す。hにより大き く変動することがわかる。また、hが真の値に近い場合、真のω近 傍で極小値を示す傾向が見受けられる(各数値は4節参照)。

3) Holzer 法の適用(手法1)

上記の考察より、複素固有値問題に Holzer 法を適用させた演算

Complex eigenvalue analysis using Holzer method

SUZUKI Mitsuo

(10)

手順を示す。

Step0 ω^(s)、h^(s)を仮定する。

Step1 (8)、(9)式より、 $|u_0^{(s)}|^2 = Re[u_0^{(s)}]^2 + Im[u_0^{(s)}]^2$ を算出する。

Step2 $\omega^{(s)}$ を固定し、 $h^{(s)}$ 近傍で $|u_0^{(s)}|^2$ が極小となる $h^{(s)}$ を求める。 Step3 Step2で求めた $h^{(s)}$ を固定し、今度は $\omega^{(s)}$ 近傍で $|u_0^{(s)}|^2$ が極 小となる $\omega^{(s)}$ を求める。

Step4 Step2,3で更新された $\omega^{(s)}$ 、 $h^{(s)}$ を用いてStep1,2,3を繰り返し、 $|u_0^{(s)}|^2$ が十分に小さくなった時点で演算を終了する。

Step0の $\omega^{(s)}$ 、 $h^{(s)}$ は求める真の値に近いことが望ましい。例と しては、無減衰時の固有円振動数 $\omega^{*(s)}$ と、対角要素による略算に より求めた減衰定数 $h^{*(s)}$ を初期値として設定する方法が考えられ る。 $h^{*(s)}$ は、無減衰の $\omega^{*(s)}$ と固有モード成分 $u_j^{*(s)}$ を用いると、せ ん断型モデルでは、下式の通りとなる。

$$h^{*(s)} = \frac{1}{2\omega^{*(s)}} \sum_{j=1}^{n} c_j \left(u_j^{*(s)} - u_{j-1}^{*(s)} \right)^2 / \sum_{j=1}^{n} m_j u_j^{*(s)^2}$$
(14)

この初期値の仮定によっても、収束する固有値の次数が目的と する次数と異なる場合があり、その場合は、初期値を適宜シフト させながら、算出を繰り返す必要が生じる。*Step2*,3の $|u_0^{(s)}|^2$ の極 小値の算出では、仮定された $\omega^{(s)}$ や $h^{(s)}$ の近傍の $|u_0^{(s)}|^2$ の値を用い て、ニュートン法などを適用する。

4) Holzer 法の適用(手法 2)

手法1は、 $|u_0^{(s)}|^2$ の極小値算出で数値解析上の工夫が求められる。 ここでは、より簡便な方法について提案を行う。

真の値とは異なる仮定値 $\omega^{(s)} \geq h^{(s)}$ により求められた $u_0^{(s)}$ は非ゼロとなるが、手法2では、 $u_0^{(s)} = 0$ とおきモード形を境界条件が満足されるように置き換える。このモードベクトルより $\omega^{(s)} \geq h^{(s)}$ を更新する。 $\omega^{(s)} \geq h^{(s)}$ は $u_i^{(s)}$ を用いて下式より算出する。

$$\omega^{(s)^{2}} = \sum_{j=1}^{n} k_{j} \left(Re[u_{j}^{(s)} - u_{j-1}^{(s)}]^{2} + Im[u_{j}^{(s)} - u_{j-1}^{(s)}]^{2} \right)$$

$$/ \sum_{j=1}^{n} m_{j} \left(Re[u_{j}^{(s)}]^{2} + Im[u_{j}^{(s)}]^{2} \right)$$

$$h^{(s)} = \sum_{j=1}^{n} c_{j} \left(Re[u_{j}^{(s)} - u_{j-1}^{(s)}]^{2} + Im[u_{j}^{(s)} - u_{j-1}^{(s)}]^{2} \right)$$

$$/ 2\omega^{(s)} \sum_{j=1}^{n} m_{j} \left(Re[u_{j}^{(s)}]^{2} + Im[u_{j}^{(s)}]^{2} \right)$$

$$(15)$$

$$(15)$$

$$(15)$$

$$(16)$$

演算手順を以下に示す。

- Step0 $\omega^{(s)}、h^{(s)}$ を仮定する。
- Step1 (8)、(9) 式より、u^(s)を算出する。

Step2 $u_0^{(s)} = 0$ として(15)、(16)式より $\omega^{(s)}$ と $h^{(s)}$ を算出する。

Step3 Step2で更新された $\omega^{(s)}$ 、 $h^{(s)}$ を用いて、Step1に戻り、以降Step1,2を繰り返し $|u_0^{(s)}|^2$ が十分に小さくなった時点で演算を終了する。

Step0では、手法1と同様な対応が必要となる。また、高次モードで固有値が近接するような場合等では、上手く固有値が求められないケースが生じるが、実務の検討では、低次モードまでの考慮で十分なことが多く、十分に実用に耐えうるものと考える。

4. 複素固有値解析例

複素固有値解析の例を以下に示す。

解析モデルは 5 質点とし、重量、 剛性は表 1 に示す通りで、減衰は 2 タイプを設定した。タイプ 2 は、 減衰が不連続に分布する例として 設定した。収束判定として、 |u₆^(s)]

表 1.	解析モデル

層	重量	剛性 (kN/am)	減衰係数 (kN·sec/cm)			
	(KIN)	(KIN/CIII)	タイプ1	タイプ2		
5	5000	702	50	0		
4	5000	1130	50	0		
3	5000	1458	50	100		
2	5000	1704	100	100		
1	5000	1875	100	100		

設定した。収束判定として、 $|u_0^{(s)}|^2 / \sum_{j=1}^n |u_j^{(s)}|^2 < 1.0 \times 10^{-10}$ とし て解析した複素固有値解析の結果を表 2 に示す。結果は、一般固 有値解析の QZ 法による結果と有効数字 5 ケタ程度まで一致する 結果となった。

図 1 に無減衰時の $\omega - u_0$ 関係を、図 2 に減衰タイプ 1、2 の $\omega - |u_0|^2$ 関係を示す。縦の二点鎖線は固有円振動数の位置を示す。 減衰タイプ 1 の場合は、手法 2 においても各モードの算出は可能 であったが、減衰タイプ 2 の場合は、手法 2 では、4 次モードの 算出が困難であり、手法 1 により、仮定する $\omega^{(s)}$ を適宜シフトし ながら算出した。手法 2 で困難だった理由としては、図 2 に示さ れるように減衰タイプ 2 の 3 次モードと 4 次モードの周期が近接 しているためと考えられる。非比例減衰ではこのような高次モー ドで周期が近接する現象がしばしば見られ、また(14)式のような略 算の減衰定数と大きく異なる結果も生じ、留意が必要である。

表 2. 複素固有值解析結果解析

	~ · · · · · · · · · · · · · · · · · · ·											
		無減衰			減衰タイプ1				減衰タイプ2			
		mode	固有周期 Tj(s)	固有 円振動数 ωj(1/s)	略算 減衰定数	固有周期 Tj(s)	固有 円振動数 ωj(1/s)	減衰定数	略算 減衰定数	固有周期 Tj(s)	固有 円振動数 ωj(1/s)	減衰定数
		1	0.985	6.4	0.096	0.984	6.4	0.096	0.087	0.979	6.4	0.087
		2	0.391	16.1	0.289	0.387	16.2	0.287	0.087	0.387	16.2	0.078
		3	0.249	25.2	0.406	0.248	25.4	0.410	0.223	0.220	28.6	0.066
		4	0.186	33.8	0.486	0.184	34.1	0.467	0.305	0.211	29.7	0.460
		5	0.148	42.4	0.634	0.152	41.3	0.658	0.734	0.150	41.9	0.754
n	3.0 2.0 1.0 -1.0 -2.0 -3.0		ω ⁽¹⁾ =6.38	10.0	ω ⁽²⁾ =16.1	20.0	25!0	ω ⁽⁴	^H =33.8	ω ⁽⁵⁾ =4	42.4 0 45	.0 50.0 Cu
図 1. $\omega - u_0$ 関係 (無減衰)												
u n ²	4.0 3.0 2.0 1.0 0.0		ω ⁽¹⁾ =6.39		ω ⁽²⁾ =16.2		ω ⁽³⁾ =25.4		o ⁽⁴⁾ =34.1	ι ω ⁽⁵⁾ =41	1.3 – – –	h=0.0963 h=0.2867 h=0.4101 h=0.4667 h=0.6583 h=0.6583
u ₆ 2	5.0 4.0 3.0 2.0 1.0 0.0		5.0 ω ⁽¹⁾ =6.42	10.0	15.0 ω ⁽²⁾ =16.2	20.0	25.(ω ⁽¹	0 30.	0 35	.0 40 ω ⁽⁵⁾ =.	41.9 -	5.0 50.0 h=0.087: h=0.0784 h=0.0658 h=0.4602 h=0.7539 h=0.7539
	0.0	0.0	5.0	10.0	15.0	20.0	25.	30.	.0 35	.0 40	0.0 4	5.0 50.0

5. まとめ

Holzer 法を用いた実数値計算による複素固有値解析法について、2 つの手法を紹介し、演算例を示した。

* Yamashita Sekkei Inc., Structural Design Dept. 1