# 鉄骨トラス屋根体育館における地震時の屋根面応答に関する検討 |市体育館を例とした振動解析 その2

| 正会員 | ○曽根拓也* | 正会員 | 鈴木光雄' |
|-----|--------|-----|-------|
| 正会員 | 三宅由祐*  |     |       |

| 学校体育館 | 屋根面ブレース | 鉄骨屋根 |
|-------|---------|------|
| 振動解析  | 接合部     |      |

## 1 はじめに

本報その1では、建物のモデル化、静的および動的 解析の概要、入力地震動について示した。本報その2 では、解析結果を示し、考察を行う。

#### 2. 応答加速度·応答変位結果

図 1 に各通りの上弦材位置、下弦材位置における節 点の最大応答加速度の結果を示す。地震波毎の最大応 答値の差異は、いずれの Case でも 30%程度であり、 Elcentro\_NS の応答が最大となった。また、上弦材位置 と下弦材位置の節点の応答加速度を比較すると、 Case2,3 では、下弦材位置の方が大きい値となっている。

Case 毎の結果を比較すると、耐震壁の無い Casel が 各通りほぼ一様の応答値を示したのに対し、耐震壁を 有する Case2,3 では、側部分に対し、中央部の応答が大 きく増幅した。この値は、各層の重量から算定した Ai 分布による水平震度を大きく上回る結果となっている。

また、Case2 に対し、Case3 の加速度は同程度かやや 低減された値となっており、下屋の部分的な柱の拘束 による発生加速度への影響は、少ない結果となった。

Case2,3 において中央の加速度が大きくなったのは、 屋根面が剛床ではなくフレーム毎に異なった挙動を示 しているためであり、屋根面を多質点とみなし<sup>\*3</sup>、成 田・竹内らの報告<sup>\*4</sup>を参考に、屋根面内での Ai 分布に よる加速度の推定を試みる。本検討では屋根面をフレ ーム毎に全て分離し、計4質点とした。

計算結果は表1に示す通りであり、図1に計算で求 めた加速度を点線(推定法)で記載している。なお推定法 では、Co=1.0とし、Ds、Fes、Iは考慮していない。 Case2の Elcentro\_NSのみ、推定法による加速度を上回 ったが、他の地震動については、最大加速度の上限を 抑えており、梁間方向の地震時に対しても、成田・竹 内らの方法で精度良く加速度推定が行えたと考える。

図2にElcentro\_NSの応答変位を示す。Caselと3の 両側と中央において加速度は大きな差が生じていたが、 変位差に着目すると20mm程度でほぼ同じ値である。

これは、本振動は一次モードが卓越しており、両側 と中央の加速度の比が振幅の比に比例する傾向になっ たためと考えられる。

Seismic Response of School Gymnasia with Steel Truss Roofs: Part2, Results of Dynamic Response Analysis

表1 屋根を多質点とした場合の水平震度

| 公一 注版と9 g 派とした物目の六十 版及 |         |      |       |      |      |       |      |      |  |
|------------------------|---------|------|-------|------|------|-------|------|------|--|
| 位置                     |         | Wi   | Σwi   | Ai   | Ci   | Qi    | Pi   | Ki   |  |
| R階                     | XB4,5通り | 1493 | 1493  | 1.78 | 1.78 | 2657  | 2657 | 1.78 |  |
|                        | XB3,6通り | 1510 | 3003  | 1.52 | 1.52 | 4561  | 1904 | 1.26 |  |
|                        | XB2,7通り | 1731 | 4734  | 1.38 | 1.38 | 6514  | 1953 | 1.13 |  |
|                        | XB1,8通り | 4959 | 9693  | 1.16 | 1.16 | 11256 | 4742 | 0.96 |  |
|                        | 2階      | 5927 | 15620 | 1.00 | 1.00 | 15620 | 4364 | 0.74 |  |



SONE Takuya, MIYAKE Yusuke, SUZUKI Mitsuo

## 3.部材応力の応答結果

# 3.1 各部材の降伏状態

本建物の降伏は、ブレースの圧縮降伏と柱脚ひび割 れ降伏が主要な降伏であり(図 3)、ブレース引張降伏と 柱脚のヒンジは発生しなかった。

その他梁端部の弱軸曲げひび割れと、耐震壁のひび 割れが生じたが、いずれも軽微であり、本物件は全体 として塑性化の程度の少ない架構であった。



図 5 履ご和来 (左:X4-1 階柱脚、右:X1-2 間ブレース)

### 3.2 下弦材の接合部軸力

図4に下弦材とRC 躯体の接続部に発生する軸力の最 大値をまとめる。振動解析の応力値は、静的解析の応 力値よりも大きく、推定法の水平震度で解析した値と の開きも、応答加速度で比較した時に比べて大きい。

これは、推定法では上下弦位置で同じ水平震度を用いたが、振動解析では上弦材位置は水平ブレースの拘 束により加速度増幅が低減される一方、下弦材位置で は加速度が増幅し、下弦材位置から上弦材位置へ水平 力の移行が顕著に行われたためである。下弦材の接合 部設計の際は設計応力に余裕を見込む等の必要がある と考えられる。なお、下弦材の最大圧縮軸力は長期も 含め 489kN であり、文献 5 に示す実験結果の圧縮耐力 Pに対して十分な余裕を有していることを確認した。

#### 3.3 ブレースの発生軸力

図 5 にブレースに発生する軸力の最大値をまとめる。 ブレースの発生軸力は中央部からの累積であるため、 実施設定時と、推定法の水平震度による静的解析でも、 振動解析の結果との差は小さかった。

## 4. まとめ

実例を題材とした鉄骨トラス屋根体育館の振動解析 を行い、以下の知見を得た。

1) 耐震壁が両端にある屋根面の加速度は、平面中央と 両側で大きな差異を示し、中央では1 質点として算定 した水平震度を大きく上回る。

2) 本例の梁間方向の振動による最大応答加速度は、フ レーム毎に質量を設けた Ai 分布でおよそ推測可能であ り、ブレース応力もおおよそ一致した。ただし、下部 構造とトラス材の接合部の応力は、上下弦材位置の発 生加速度の差異による水平力の移行により、振動解析 の結果の方が大きくなったため、推定法を用いた結果 に対し、余裕を見込むなどの必要があると考える。

3) 部分的な下屋の存在が屋根面の応答加速度・変位に 与える影響は少なかった。

### 参考文献

- (社)建築研究振興協会他:東日本大震災における鉄骨屋根構 造の被害調査報告,2013.2
- 2) (社) 日本建築学会東北支部:2011 年東日本大震災災害調査報告,2013.5
- 3) 長屋敦士,柴田良一,中澤祥二,大家貴徳,加藤史郎:桁行き 方向に地震動を受ける体育館のリスクアナリシス その1: 等価質点モデル,日本建築学会大会学術講演梗概集(東 北),2009.8
- 4) 成田和彦,竹内徹,松井良太: RC 妻面架構を有する鉄骨屋根 体育館の耐震性能,日本建築学会構造系論文集,第78巻第 698号,p1895-1904,2013.11
- 5) 徐蕾, 松岡祐一,鈴木光雄,曽根拓也,三宅由祐:摩擦接合型 コネクタを用いたスギ集成材と鋼板によるハイブリッド材の 軸方向繰り返し載荷実験,日本建築学会大会(近畿),2014.9



\*山下設計 構造設計部

\* Structural Design Division , YAMASHITA SEKKEI