地震を受けた免震U型ダンパーの残存疲労性能評価

その3 某庁舎に対する評価

正会員	〇 川村	典久*1	同	小西	克尚 ^{*1}
同	阪上	浩二*2	同	落合	徹 ^{*2}
同	焦	瑜*3	同	山田	哲 ^{*4}

免震構造

免震 U 型ダンパー 疲労損傷

1. はじめに

前報¹に引き続き、東北地方太平洋沖地震を経験した庁舎を対象に免震 U 型ダンパーの残存疲労性能評価 を実施した。本検討では前報の解析的手法、罫書記録 の分析および抜取試験に加え、文献 2)で示されている 形状変化による判定も試みた。結果をここに報告する。

2. 建物概要と地震時の罫書記録

本建物は宮城県北部に立地する RC 造 3 階建の庁舎 である。免震層のシステムは鉛プラグ入り積層ゴム支 承、弾性すべり支承(動摩擦係数 µ_d=0.01)と、U45 (図 1)×4本タイプの免震U型ダンパー8台とで構成 されており、罫書板が設置されている。地震後に観察 された罫書記録の模写を図 2 に示す。南北方向に変位 の主方向ならびに突出したピークが現れており、南側 に 400mm を超える最大変位が記録されている。罫書板 中心から半径約 80mm の範囲には罫書線が密集してお り判別・模写が困難であった。

3. 形状変化による判定

文献 2)では地震後のダンパー高さ H'と根本寸法 H と の比を形状変化率と定義し(図 3)、地震後の継続使用 の一次判定管理値として形状変化率 1.1 を定めている。 本建物のダンパー外観写真を写真 1 に示す。現地調査 の結果、形状変化率の最大値は約 1.2 であり文献 2)で 定める二次判定が必要なレベルであった。

4. 解析的手法による推定

建物の立地する地域では震度6弱~7の強い揺れが観 測された。表1に建物周辺に設置されている地震観測 点と最大加速度を、図4に各観測記録の速度応答スペ クトルを示す。このうち本検討では建物から最も近い JMA 登米市中田町の観測記録を用いて時刻歴応答解析 を行った。図5に応答解析による免震層上下の相対変 位(オービット)を示す。解析結果・図2の野書記録 共に水平2方向に回転が加わった軌跡を描いている。 一方で最大変位や変位の主方向は解析結果と野書記録 とでやや異なっている。これは建物と観測点との地盤 特性の差異などによるものと考えられる。

解析結果からダンパー累積損傷値を評価する。前報 1)

図2 罫書記録

写真1 ダンパー外観

表1 観測点一覧

細測占	建物からの	震度	最大加速度[gal]		
観側尽	距離	(計測震度)	NS	EW	
JMA登米市中田町	約4km	震度6弱(5.7)	346	425	
MYG003(東和)	約10km	震度6弱(5.5)	570	781	
MYG004(築館)	約16km	震度7(6.6)	2700	1268	
MYG007(豊里)	約11km	震度6弱(5.8)	568	651	

の手法に倣い、変位オービットを NS 方向と EW 方向 に投影し、レインフロー法により振幅の頻度分布をそ れぞれ計数する。次いでダンパーの 0°/90°方向それぞ れに疲労曲線を用いて損傷値 D0°、D90°を算出したう えで合算して累積損傷値 D を求める。結果は 0.094 と

Evaluation of remaining fatigue life of U-shaped steel damper after earthquake (Part 3: Evaluation on an office building) なった。また捩れ影響指標 $J_f^{3)4)}$ は 2.92 であった。

5. 罫書記録の分析による推定

前報¹⁾の [手法 2]によりダンパー累積損傷値の推定を 行った。図 6 にピーク変位の抽出結果を、表 2 にダン パーの累積損傷値を示す。表中の Pi'は R=80mm 上の仮 想点である。本手法による累積損傷値は 0.066 であった。

6. 抜取試験による推定

抜取対象のダンパー2 台から、図7に示す試験体4体 を用意した。罫書記録では南北方向に比較的大きな変 形が記録されており、地震における変形の主方向(南 北方向)と試験の載荷方向が合うように設定する。加 振振幅は罫書記録による最大値とほぼ同等となる片振 幅 450mm(δ_t =900mm/ γ_t =317%)と、U45 の一般的なバイ リニアモデルにおけるエネルギー吸収量と新品の試験 結果とがほぼ等価となる片振幅 300mm (δt =600mm/ γt =211%)の2 レベルを設定し、正負交番繰 返加力を行った。

図8に試験体1,2の荷重変形関係を、図9に試験体2 の各回のエネルギー吸収量を示す。図9の点線はバイ リニアモデルによるエネルギー吸収量を示している。 ダンパーは破断直前まで安定した履歴ループを描き、 エネルギー吸収量も大幅な低下は見られない。表3に 各試験体が破断に至るまでの繰返し数を示す。また解 析的手法より推定した本震での累積損傷に試験での損 傷を累加した、2方向特性を考慮した疲労損傷評価を図 10に示す。試験結果と疲労性能曲線とで大きな差異は 見られない。試験体2,4の試験結果が疲労性能曲線をや や下回っているが、これは実験値と疲労性能曲線との ばらつきや応答解析と実状との差異、余震による影響 などに起因するものと思われる。

7. まとめ

非常に強い揺れを観測した地域に立地し、大きな変 位を記録した建物を対象に、解析的手法や罫書記録の 分析、抜取試験による免震 U 型ダンパーの残存疲労性 能評価を実施し、継続使用に支障ないことを確認した。 文献 2)の形状変化による判定では本建物は詳細検討対 象となったが、詳細検討結果は継続使用の妥当性を示 しており、今回のケースでは文献 2)の判定基準は安全 側の判定を与える結果となった。

【参考文献】

- 小西他:地震を受けた免震U型ダンパーの残存疲労性能評価(その1~2), 日本建築学会学術講演梗概集(東海), B-2分冊, pp.347-350, 2012 年9 月
- 2) 一般社団法人日本免震構造協会:免震建物の維持管理基準-2012 3) 吉川他: U型ダンパーの2方向特性に関する研究(その1~4),日本建築学
- 会学術講演梗概集(東海), B-2分冊, pp.339-346, 2012 年9 月 4) 吉敷他:水平2方向載荷下における繰り返し変形性能に関する実験 -免
- 震構造用U字形鋼材ダンパーの水平2方向特性 その1-, 日本建築学会構造 系論文集 第77巻 第680号, 1579-1588, 2012年10月

図 10 2 方向特性を

考慮した疲労損傷評価

*1 新日鉄住金エンジニアリング(株)

- *2 ㈱山下設計
- *3 東京理科大学 助教 博士(工学)
- *4 東京工業大学 准教授 博士(工学)

Assistant.Prof., Tokyo University of Science, Dr.Eng.

Yamashita Sekkei Inc.

※:0°方向ダンパーロッド破断時で載荷を中止

Nippon Steel & Sumikin Engineering Co., Ltd.

Assoc. Prof., Tokyo Institute of Technology, Dr.Eng